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We carry out a numerical study of the growth of domains following a quench in a three-dimensional scalar
model with competing ferromagnetic J; and antiferromagnetic J,<<J; interactions. A “dynamical phase dia-
gram” separates a region I of algebraic growth from a region II of logarithmic growth across an equilibrium
“corner-rounding transition,” confirming a previous claim. In region II, up to the late times we study, the
correlation functions are anisotropic and violate dynamical scaling. This arises from the presence of two
distinct length scales—the distance between interfaces R and the distance between corners L, both of which
grow logarithmically slowly. In the scaling limit (+— ), L/R—0, restoring scaling and isotropy. Under the
assumption of analyticity, the asymptotic scaling function is identical to the pure Ising model. The slow
logarithmic growth arises from a renormalization of the kinetic coefficient at the smaller length scale L, and
can be associated with the dangerously irrelevant operator J, at the zero-temperature fixed point (ZFP). This
implies that at the ZFP, the two models, with and without J,, belong to the same universality class.

PACS number(s): 64.60.Cn, 64.75.+g, 64.60.My

A zero-temperature fixed-point (ZFP) [1] governs the late-
time evolution of domains following a quench from a disor-
dered to an ordered phase. Generically, this fixed point is
associated with a single dominant length scale, R(¢), which
is the characteristic length over which spins order (distance
between interfaces). A variety of studies [2] indicate that in
the vicinity of the ZFP, the equal time correlation function

g(r,6)=((0,t) #(r,t)) exhibits a scale invariant (isotropic)
form, g(r/R(¢)), with R(t)~t'* (z is the dynamical expo-
nent). This diverging length implies that microscopic spatial
and temporal details are irrelevant. This results in the emer-
gence of universality classes (UC) characterized by the form
of the scaling functions and the values of exponents such as
z.

The presence of quenched randomness has a dramatic ef-
fect on dynamics, by pinning interfaces and retarding domain
growth, R(t)~(Inf)®. The energy barriers required to sur-
mount interface pinning give rise to a scale-dependent renor-
malization of the bare kinetic coefficient [3], resulting in this
slow logarithmic growth. In spite of this, however, the scal-
ing functions and the exponents remain unaltered [3,4]. Ran-
domness is associated with a dangerously irrelevant variable
at the ZFP [3].

Recently, Shore and Sethna (SS) [5] and Shore, Holzer,
and Sethna [6] studied domain growth dynamics in a pure
three-dimensional (3D) (frustrated) Ising model (and an
equivalent two-dimensional tiling model) with short range
(isotropic) interactions. Quite surprisingly, they found that
the dynamics of this model shares some features in common
with the random field Ising model (RFIM). Their analysis,
largely confined to the growth law, reveals that at tempera-
tures below the ‘‘corner-rounding” temperature, the domains
grow logarithmically slowly (reminiscent of growth in the
RFIM) and are sharp and blocky (unlike pure Ising domains,
which have rounded corners). From their limited Monte
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Carlo data on correlation functions, they arrive at the tenta-
tive conclusion that (a) the asymptotic correlation function
obeys dynamical scaling (evidence for this is weak); (b) the
scaling functions are nonisotropic (and thus different from
the pure Ising case), nonuniversal, and nonanalytic in tem-
perature T (below the critical temperature). These results
would seem to indicate that short range (isotropic) interac-
tions that produce frustration (and scale-dependent energy
barriers to coarsening) are relevant at the conventional Ising
ZFP [7] (this is quite distinct from the RFIM). These conclu-
sions pose a serious challenge to conventional knowledge in
domain growth kinetics.

In this Rapid Communication, we study the Langevin dy-
namics of a soft-spin version of the SS model, following a
quench from the disordered to the ordered phase. We dem-
onstrate a ‘“‘dynamical phase diagram” separating a region I
of algebraic growth from a region II of logarithmic growth
across an equilibrium corner-rounding transition. We show
that in region II, both growth behavior and asymptotic cor-
relation functions are identical to those in generic quenched
random models. This arises because of the presence of two
length scales (just as in the RFIM [3]): L ~In¢, the distance
between corners of cubic domains, and R~ (Inf)*?, the dis-
tance between interfaces. Since the numerical simulations of
SS do not explore up to times when R>L, their conclusions
(a) and (b) only reflect preasymptotic behavior. In the scaling
limit, as t— o, L/R—0, restoring scaling and isotropy of the
asymptotic correlation functions. Under the assumption of
analyticity, the scaling function is identical to the pure Ising
model. The logarithmic growth arises from a scale-dependent
renormalization of the kinetic coefficient at the smaller
length scale L, and can be associated with the dangerously
irrelevant operator J, (see below) at the ZFP. This implies
that at the ZFP, the SS model, the pure Ising model, and the
generic quenched random models, belong to the same UC.
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The three-dimensional SS model [5] is an Ising model
with nearest-neighbor (nn) ferromagnetic J;=0 and weak
next-nearest-neighbor (nnn) antiferromagnetic J,=0 cou-
plings. A coarse-grained free-energy functional F[ ¢] is ob-
tained by a Hubbard-Stratonovich transformation [8], where
the order parameter ¢ is a soft spin (— =< ¢;<x),

o[ b
Fl¢)=2, ( —5#g ¢:-‘) ~NhX Gt b

0y
Although the competition promoted by J, leads to frustra-
tion, the ground state is ferromagnetic as long as J,/J,=4.
The parameters b and u are temperature 7 dependent. The
strict T=0 Ising limit is obtained by letting b,u— such
that b/u=1. However, in what follows, we shall treat b and
u as independent parameters and restrict ourselves to the
T=0 subspace (by setting the noise in the Langevin equation
to zero). In this subspace, the up-down symmetry is sponta-
neously broken when b>b_ = —6J,+12J,.
A quench from = to T=0 initiates the dynamics of
¢i(t) via the time-dependent Ginzburg Landau equation

into its ferromagnetic ground state. Time is measured in
units of the bare kinetic coefficient I'y. We solve Eq. (2)
using a first-order Euler scheme on a 128> and a 643 lattice
with a time step d¢=0.1. We average over 10 realizations of
the initial configuration {¢;(0)}, which are uniformly dis-
tributed between —0.1 and 0.1 with zero mean. Without any
loss of generality we fix u=1.

Our results on the growth of domains at various values of
b>b, and J,/J, are consistent with the results of SS. A
region of I (b, <b<bcg) of algebraic growth separates a
region II (b>bcR) of logarithmic growth across a boundary
ber(J2/J1). A characteristic length scale, associated with
the distance between interfaces, is extracted from the spheri-
cally averaged correlation function (R(¢),t)=g(0,t)/2. In re-
gion I [Fig. 1(a)], R(¢)~tY?, with 1/z=0.45+0.05, consis-
tent with the usual diffusive growth, z=2, for model-A
systems. In region II [Fig. 1(b)], however, after an early al-
gebraic growth (whose ‘“range” increases with decreasing
J,/J1), we obtain a reasonable fit to R(#)~[Inf]", with
m~3 at late times (our data is not extensive enough to
specify m accurately). From a simulation at different values
of b and J,/J; in region II, we claim that
R(t)~[(J2/J1) " 1nfPP? (this is different from the SS claim,
R(%)~1nt; see [9], however).

A clue to understanding a logarithmic growth in this
model is provided by the instantaneous snapshots of order
parameter configurations at late times, Fig. 2. In region I
[Fig. 2(a)], the domains are smooth with no sharp edges or
corners and resemble the domains of the pure Ising model.
Region II [Fig. 2(b)], however, exhibits blocky domains with
sharp corners and facets along simple cubic directions. Close
to the boundary, (b—bcg)— 0", the domains have rounded
corners and some sharp edges. Following Ref. [6], we iden-
tify bcg with the corner-rounding transition of the associated
equilibrium crystal shape problem defined as the point at
which the step free energy across the [11] interface goes to
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FIG. 1. (a) Growth of domain size R(f) in region I (b=-3,
Jy = %) plotted in a log-log plot. The slope of the straight line is 0.45
+0.05. (b) Growth of domain size R(¢) in region II (b=-0.1,
J,/J1=0.01). Here, In[R(?)] is plotted against In(Inf). The slope of the
straight line is 1.2+0.2, consistent with R(t)~[In]*? (see text).

zero. We now repeat the argument [5] favoring logarithmic
growth, which is compelling in its simplicity. After a quench
with b>bcg>b,, the late-time morphology of the domains
consists of sharp cubic blocks of, say, “down” spins, which
shrink with time. The energy (in units of J;) required to flip
an entire edge of such a domain (for convenience, consider
an isolated cube) of linear dimension L by single spin flips
goes as 4J,(L +1)/J; (L is measured in units of lattice spac-
ing a and is therefore dimensionless). Such scale-dependent
energy barriers are reminiscent of energy barriers encoun-
tered in the RFIM [3] and lead to slow logarithmic growth,
L(t)~(J,/J1) 'Int [10]. Note that this growth is different
from that of R(t), extracted from the bulk correlation func-
tion.

We investigate the nature of the correlation functions at
late times. Region I follows standard dynamics at late times;
the asymptotic correlation function is isotropic [the same
along the lattice axes (X) and the face ((J) and body (+)
diagonals] and the spherically averaged g(r,t) satisfies dy-
namical scaling. We find that the scaling function
g(r/R(?)) is identical to that of the pure Ising model and thus
independent of J,. At large k, the scattering function [Fou-
rier transform of g(r/R(¢))] follows Porod’s law
S(k/R(t))~k~*, consistent with the random interfaces being
smooth and thin.

Region II contains several unusual features. It has been
reported [6] that the correlation function is anisotropic with
g8x=gn=g, at fixed r/R. Further, g«(r,t) exhibits dy-
namical scaling [6] at late times and the associated scaling
function is independent of J, /J (and identical to that of the
pure Ising model). There is a clear breakdown of scaling for
g0, &+, and the spherically averaged g(r,t) (Fig. 3) even
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FIG. 2. A two- dlmensmnal section of spin configuration at late times. (a)
region I (b=-3, J;/J,= 5) smooth interfaces; (b) region II (b=—0.1,
J,/J1=0.01), sharp edges and corners.

up to the late times we have investigated. Moreover, the form
of the late-time g(#/R(¢),t) (and, similarly, for g5 and g )
depends explicitly on J,/J; and deviates strongly from the
Ising scaling function. Indeed, the anisotropy in the correla-
tion function, the breakdown of scaling, and the deviation
from the pure Ising scaling function get more prominent at
larger J,/J,. The late-time g(r,z) shows a linear depen-
dence at small r, consistent with the presence of smooth
interfaces. However the slope, which is proportional to the
density of interfaces, depends on the value of J,/J;. These
observations provoke the following set of questions. Why
does dynamical scaling break down in region II at such late
times? Why is the late-time g(r/R(t)) anisotropic and non-
universal? Does dynamical scaling get restored at much later
times? If restored, will the scaling function still be aniso-
tropic (even though the free-energy functional is isotropic)?
Will it still depend explicitly on J, /J; in region II and thus
be nonuniversal and different from the pure Ising scaling
function? An affirmative answer would imply that the bulk
dynamical scaling functions are nonanalytic at the corner-
rounding transition by (which is not associated with singu-
larities of the bulk free energy). It would also mean that the
scaling function explicitly depends on the short range inter-
action J, and the temperature T (T<T<g<<T7.) and would
hence be nonuniversal.

We will now provide a consistent explanation for all the
questions just listed. A look at the configuration snapshots
[such as Fig. 2(b)] in region II at various times immediately
suggest that there are two independent length scales. One of
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FIG. 3 Scaling function g(r/R(t)) vs r/R(l) in region I (b=-3 and
Jy = 6) and in region Il (b=—1, J, /J;= ) at various late times. Note
the clear breakdown of scaling in region II. The corresponding plot in region
I shows excellent scaling behavior.

these, R(t), associated with bulk domain structure, is mea-
sured by the bulk correlation function g(r,t) and corre-
sponds to the typical distance over which spins change ap-
preciably (distance between interfaces). The other length
scale, L(t), associated with the surface structure of domains
(area of the face), corresponds to the typical distance over
which “steps” are correlated (the distance between corners
of the blocky domains). In general, these two length scales
grow at different rates. In fact, in a generic pure spin model
(e.g., the Ising model) above its roughening transition, L
=§,, the bulk correlation length, which is microscopic,
while below the roughening transition, R>L=§,. Thus the
domains have rounded corners on a length scale R corre-
sponding to the domain size. The bulk correlation function,
which can be written as g(r/R(t),L(¢)/R(¢)), will assume
its scaling form at late times, when L (¢)/R(t)— 0, which in
generic pure systems happens quite soon. In the SS model,
both R(t) and L(t) grow logarithmically slowly, perhaps
with different powers, and so the scaling regime will be at-
tained at very late times. In fact, as we have just seen, R(?),
measured from g(r,t), grows as [Inf]™, where m~3>1,
while L(¢) [obtained from competing the energy barrier to
flip spins along the edge of a cube of size L(t)] grows as
Int.

We provide a phenomenological “derivation” of the
growth of -these two length scales, in the spirit of Lai, Ma-
zenko, and Valls (LMV) [11,6,12]. Since the dynamics of the
spins does not conserve the total magnetization, the velocity
R(t) should be curvature driven, albeit activated. The time
scale of interface motion is dominated by the time required
to flip the spins along its edge (recall the blocky domain
pictures), and so the LMYV equations read [13]

dR/dt=T /R, 3

where ', =T e /8¢ (fgxJ, is the free-energy barrier per
unit length of the edge of a typical cubic domain of side L
[14]) can be interpreted as the renormalized kinetic coeffi-
cient [3] due to the existence of scale-dependent energy bar-
riers. To obtain the corresponding equations for L(t), we
consider the dynamics of spins restricted to the [111] inter-
face [6]. This corresponds to the dynamics of rotating el-
ementary hexagons (which consists of three tiles) in the as-
sociated two-dimensional tiling models [6]. It is easy to
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convince oneself that this dynamics is conservative [6] (and
activated) and so, following LMV,

dL/dt=T/L>. 4)

These coupled equations, valid at late times, admit the
asymptotic solution, L(f)~fz'Inz and R(£)~[f5 'Int]*2
The next leading-order corrections to L~O (In(Ilnf)) and R
~O((In?)"?In(In?)), and so the asymptotic ratio of the two-
length scales is L(£)/R(¢)~[f5 ‘In]"2. One has to simulate
up to t~e19 to see R/L~10! 1t is clear, therefore, that even
up to the late times we study, the correlations are character-
ized by these two slow growing length scales. This, as we
had seen, results in a breakdown of dynamical scaling. At
very late times, of course, a single length scale R would
dominate and dynamical scaling would be restored. It is not
surprising that the preasymptotic g(r/R(¢),t) is nonuniversal
(J, dependent). It is reasonable to suggest that at late times,
g(r,t) can be written as g(r,R(¢),L(t))=g(r/R,L/R)
=go(r/R)+(L/R)g.(r/R,L/R) [15]. The explicit J, depen-
dence can be seen in the leading preasymptotic term. A simi-
lar expansion would hold for g« , g, and g, with the same
leading term g,. The scaling function gy(r/R) is clearly
isotropic (since as t—o, L/R—0, and the domains would
look smooth on the length scale R and would lose their block
morphology) and independent of J, and hence identical with
the Ising scaling function. It is clear from geometry that
gx will not be affected by the formation of steps on the
interface and so will be insensitive to the block morphology
and hence to the length scale L. This explains why g« at-
tains its Ising universal form relatively quickly. g, g+, and
g are sensitive to the blockiness to varying degrees, giving
rise to the anisotropic preasymptotic behavior. To conclude,

the asymptotic dynamics of this model is indeed controlled
by the Ising ZFP at which the competing interaction J, is
irrelevant.

If J, is irrelevant at the ZFP, then why does it affect
domain growth? From the singular dependence of the ampli-
tude appearing in the logarithmic growth law as J,—0, we
conclude that J, is dangerously irrelevant at the ZFP [1,3].
Moreover, the presence of two length scales, L(¢) and R(?),
one of which grows sublinearly in the other, L ~R%? is char-
acteristic of dangerously irrelevant variables. This is analo-
gous to the situation in the RFIM [3], where the random
field, responsible for generating scale-dependent energy bar-
riers, is dangerously irrelevant at the ZFP. The logarithmic
growth comes about because this dangerously irrelevant op-
erator renormalizes the bare kinetic coefficient I', to a scale-
dependent I'; . This renormalization occurs at the smaller
length scale L at which scale-dependent energy barriers first
appear. Since L is microscopic in the scaling regime (i.e.,
L/R—0 as t—), this renormalization does not affect the
universal features of the Ising ZFP.

We conclude by asserting that the dynamics of the SS
model following a quench to low temperatures is controlled
by a ZFP. We have shown that the SS model, the pure Ising
model, and generic models with quenched randomness be-
long to the same universality class at the ZFP.
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